КОТЕЛ ПАРОВОЙ - определение. Что такое КОТЕЛ ПАРОВОЙ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое КОТЕЛ ПАРОВОЙ - определение

КОТЕЛ, ДЛЯ ГЕНЕРАЦИИ ПАРА
Паровой котел; Котёл паровой; Прямоточный котёл; Паровой пылеугольный котел; Котлоагрегат
  • Циркуляция воды в прямоточном котле <br>1 Питательный насос <br>2 Экономайзер <br>3 Испарительные трубы <br>6 Пароперегреватель <br>7 В турбину
  • Паровой котёл
  • Циркуляция воды в барабанном котле с принудительной циркуляцией<br>1 Питательный насос <br>2 Экономайзер <br>3 Подъемные трубы <br>4 Опускные трубы <br>5 Барабан <br>6 Пароперегреватель <br>7 В турбину <br>8 Циркуляционный насос
  • Рабочая характеристика котла (БСЭ)
  • Котёл Ньюкомена (БСЭ)
  • Ланкаширский котёл с двумя жаровыми трубами (БСЭ)
Найдено результатов: 83
КОТЕЛ ПАРОВОЙ      
сосуд давления, в котором нагревается вода, превращающаяся в пар. Тепловая энергия, подводимая к паровому котлу, может представлять собой тепло от сгорания топлива, электрическую, ядерную, солнечную или геотермальную энергию. Поскольку котел дает только насыщенный пар, его следует отличать от парогенератора, в состав которого в качестве неотъемлемых и необходимых агрегатов могут входить пароперегреватели, экономайзеры и воздухоподогреватели. Котлы применяются как источники пара для отопления зданий и питания технологического оборудования в промышленности, а также машин и турбин, приводящих в действие электрогенераторы. Самые малые паровые котлы бытового назначения дают ок. 20 кг пара в час при давлениях порядка атмосферного. В то же время котлы крупнейших электростанций производят до 4500 т пара в час при давлениях до 28 МПа. Такие давления называются сверхкритическими, поскольку они превышают критическое давление воды (22,1 МПа), при котором вода превращается в пар. Большой паровой котел такого типа может, потребляя несколько сот тонн пылевидного угля в час, производить столько пара при 550. C, сколько необходимо для выработки 1300 МВт электроэнергии. На рис. 1-3 представлены схемы (с указанием основных агрегатов) одного газотрубного и двух водотрубных котлов. Во всех этих котлах имеется топочная камера, в которой сжигается топливо. Горячие газообразные продукты горения уходят из зоны горения и на своем пути омывают поверхности парообразующих (кипятильных) труб, расположенных в газовом тракте. Проходя по шахте котла, эти газы охлаждаются от максимальной температуры в топочной камере до самой низкой в дымоходе. Тепло, отдаваемое газами, поглощается водой, которая нагревается и испаряется. Процесс испарения вызывает естественную циркуляцию (принудительная циркуляция создается механическими средствами - насосами).
См. также:
ПАРОВОЙ КОТЕЛ         
см. в ст. Котел.
Паровой котёл         
Паровой котёл — котёл, предназначенный для генерации насыщенного или перегретого пара. Может использовать энергию топлива, сжигаемого в своей топке, электрическую энергию (электрический паровой котёл) или утилизировать теплоту, выделяющуюся в других установках (котлы-утилизаторы).
Паровой котёл         

устройство, имеющее топку, обогреваемое газообразными продуктами сжигаемого в топке органического топлива и предназначенное для получения пара с давлением выше атмосферного, используемого вне самого устройства. Рабочим телом подавляющего большинства П. к. является вода. П. к. называют также редко применяемые парогенераторы (электрокотлы), обогреваемые электрической энергией.

Упоминания о П. к. как о парогенераторе, отделённом от топки, встречаются в работах учёных: итальянца Дж. делла Порта (1601), француза С. де Ко (1615), англичанина Э. С. Вустера (1663). Однако промышленное применение П. к. началось на рубеже 17 и 18 вв. в связи с бурным развитием горнозаводской и угледобывающей промышленности. Ранние конструкции П. к. по форме напоминали шар или же котлы для варки пищи (рис. 1), сначала их изготовляли из меди, а затем из чугуна. Одним из первых "настоящих" П. к. считают котёл Д. Папена, предложенный им в 1680.

Конструкции современных П. к. сложились в процессе изменения конструктивных форм выпускавшегося до 2-й половины 19 в. простейшего цилиндрического П. к. паропроизводительностью 0,4 mlч; поверхность нагрева этого П. к. не превышала 25 м2, давление пара 1 Мн/м2 (10 кгс/см2), а кпд 30\%. Развитие П. к. шло по двум направлениям: увеличения числа потоков газов (газотрубные П. к.) и увеличения числа потоков воды и пара (водотрубные П. к.). Первые газотрубные П. к. представляли собой цилиндрические сосуды, в которые первоначально вставляли 1, 2 или 3 трубы большого диаметра (жаровые трубы), а впоследствии десятки труб значительно меньшего диаметра (дымогарные трубы), по которым проходил газ.

Увеличение поверхности нагрева газотрубных П. к. происходило в габаритах первоначального цилиндрического котла или даже в меньших габаритах. Следствием этого явились некоторое повышение паропроизводительности котла (при незначительном увеличении суммарной массы), а также улучшение передачи тепла от дымовых газов к поверхности нагрева, приводившее к снижению температуры газов на выходе из П. к., то есть к повышению кпд.

Газотрубные П. к. отличались от цилиндрических относительно малыми размерами и высоким кпд (60\%), однако паропроизводительность их, ограничиваемая габаритами, не превышала нескольких т/ч, а конструкционные особенности ограничивали давление пара в котле 1,5-1,8 Мн/м2. Поэтому газотрубные П. к. сохранились только на транспортных установках (паровозы, пароходы), а из стационарных установок они полностью вытеснены водотрубными котлами.

Создание водотрубных П. к. шло путём увеличения числа цилиндров, составлявших котёл, сначала до 3-9 относительно больших диаметров (батарейные котлы), а затем до десятков и сотен цилиндров небольших диаметров, превратившихся в кипятильные, а в дальнейшем и в экранные трубы (рис. 2).

Увеличение поверхности нагрева водотрубных П. к. сопровождалось увеличением их габаритов, и в первую очередь высоты, но вместе с тем во много раз возрастала паропроизводительность, уменьшался удельный расход металла, всё больше повышались параметры пара и кпд.

Со 2-й половины 19 в. выпускались камерные и секционные горизонтально-водотрубные П. к. с естественной циркуляцией, у которых кипятильные трубы были расположены с наклоном в 10-12° к горизонту. Камерный П. к. состоял из одного или нескольких барабанов, подсоединённых к ним сборных камер и пучков кипятильных труб, ввальцованных в камеры. Его поверхность нагрева 350 м2, паропроизводительность 10 т/ч при давлении 1,5 Мн/м2. Замена плоских камер отдельными секциями, в которые ввальцовывали по одному ряду труб, позволила повысить давление пара, а с увеличением числа секций, из которых собирался котёл, поверхность нагрева достигла 1400 м2.

В 1893 русский инженер В. Г. Шухов создал водотрубный П. к., который состоял из продольного барабана и трубчатых батарей, представляющих собой 2 пучка труб, ввальцованных в плоские стенки коротких цилиндрических камер; в зависимости от числа батарей (от 1 до 5) поверхность нагрева котла могла изменяться от 62 до 310 м2, а паропроизводительность от 1 до 7 т/ч при давлении пара до 1,3 Мн/м2. Конструкцией котла Шухова была разрешена задача унификации отдельных элементов и их размеров.

В начале 20 в. появились вертикально-водотрубные котлы, которые за очень короткое время были доведены до высокой степени совершенства. В 1913 паропроизводительность этих котлов не превышала 15 т/ч, а давление пара 1,8 Мн/м2, к 1974 в СССР паропроизводительность их достигла 2500 т/ч при давлении 24 Мн/м2, а в США 4400 т/ч при том же давлении. Вначале вертикально-водотрубные П. к. состояли из одного верхнего и одного нижнего барабанов, соединённых пучком прямых труб. Но уже в 20-х гг. 20 в. они были полностью вытеснены более надёжными котлами с изогнутыми трубами. Типовой конструкцией в этой группе П. к. являлся трёхбарабанный котёл Ленинградского металлического завода (ЛМЗ), выпускавшийся в 30-х гг. 20 в. Поверхность нагрева этих П. к. была от 650 до 2500 м2, паропроизводительность от 50 до 180 т/ч. П. к. был оборудован камерной топкой (См. Камерная топка) для сжигания угольной пыли., Пылеугольные топки (См. Пылеугольная топка), внедрявшиеся в те же годы, очень быстро получили чрезвычайно широкое распространение и, с одной стороны, сильно повлияли на развитие конструкций П. к., значительно повысив их паропроизводительность, а с другой - позволили весьма эффективно использовать любые низкосортные местные угли. Внедрение камерных топок привело к созданию топочных экранов, которые представляют собой испарительные трубы, расположенные на стенах топочной камеры. Первоначально экраны закрывали только часть стен и предназначались для защиты обмуровки от непосредственного воздействия пламени, которое приводило к шлакованию топки и разрушению обмуровки. Постепенно экраны стали закрывать всё большую часть стен топок, а современные П. к. имеют полностью экранированные топки. Экраны, воспринимающие тепло, излучаемое пламенем и горячими дымовыми газами (радиационные поверхности нагрева), работают более интенсивно, чем кипятильные трубы, находящиеся в зоне более низких температур (конвективные поверхности нагрева). Поэтому поверхность нагрева экранированных котлов значительно меньше, чем у неэкранированных такой же паропроизводительности; в котлах со сплошным экранированием топочной камеры, называемых радиационными котлами, кипятильный пучок почти отсутствует. В 30-е гг. в СССР Л. К. Рамзиным были сконструированы водотрубные котлы с принудительной циркуляцией (см. Прямоточный котёл). Об устройстве современных П. к. см. в ст. Котлоагрегат.

В СССР все П. к., работающие с давлением более 0,17 Мн/м2, должны изготовляться, монтироваться, приниматься в эксплуатацию и эксплуатироваться в соответствии с правилами Котлонадзора. Энергетические котлы должны эксплуатироваться с соблюдением также и правил технической эксплуатации электростанций.

Лит.: Максимов В. М., Котельные агрегаты большой паропроизводительности, М., 1961; Парогенераторы, под ред. А. П. Ковалева, М. - Л., 1966; Зах Р. Г,, Котельные установки, М., 1968; Щеголев М. М., Гусев Ю. Л., Иванова М. С., Котельные установки, 2 изд., М., 1972; Гусев Ю. Л., Основы проектирования котельных установок, 2 изд., М., 1973.

Г. Е. Холодовский.

Рис. 1. Паровой котёл И. И. Ползунова (1765).

Рис. 2. Конструкции паровых котлов: а - цилиндрический; б - батарейный; в - жаротрубный; г - жаротрубно-дымогарный (локомобильный); д - камерный горизонтально-водотрубный; е - камерный горизонтально-водотрубный конструкции В. Г. Шухова; ж - двухсекционный горизонтально-водотрубный ("морской"); з - вертикально-водотрубный с гнутыми трубами; u - вертикально-водотрубный с П-образной компоновкой; к - вертикально-водотрубный с Т-образной компоновкой; л - прямоточный конструкции Л. К. Рамзина; м - прямоточный котёл ТПП-210А (СССР): 1 - барабан; 2 - колосниковая решётка; 3 - жаровая труба; 4 - дымогарная труба; 5 - сборная камера; 6 - пароперегреватель; 7 - водяной экономайзер; 8 - воздухоподогреватель; 9 - газоход.

Котёл паровой         
Котлоагрегат         

котельный агрегат, конструктивно объединённый в единое целое комплекс устройств для получения под давлением пара или горячей воды за счёт сжигания топлива. Главной частью К. являются топочная камера и газоходы, в которых размещены поверхности нагрева, воспринимающие тепло продуктов сгорания топлива (пароперегреватель, водяной экономайзер, воздухоподогреватель). Элементы К. опираются на каркас и защищены от потерь тепла обмуровкой и изоляцией. К. применяются на тепловых электростанциях (См. Тепловая электростанция) для снабжения паром турбин; в промышленных и отопительных котельных для выработки пара и горячей воды на технологические и отопительные нужды; в судовых котельных установках. Конструкция К. зависит от его назначения, вида применяемого топлива и способа сжигания, единичной паропроизводительности, а также от давления и температуры вырабатываемого пара.

В топочной камере К. происходят сгорание топлива и частичное охлаждение продуктов сгорания в результате лучистого теплообмена (См. Лучистый теплообмен) между нагретыми газами и покрывающими стены топочной камеры трубами, по которым циркулирует охлаждающая их среда (вода или пар). Система этих труб называется топочными экранами. На выходе из топки газы имеют температуру порядка 1000°С. Для дальнейшего охлаждения газов на их пути устанавливают трубчатые поверхности нагрева (пароперегреватели (См. Пароперегреватель)), выполняемые обычно в виде ширм - трубчатых змеевиков, собранных в плоские пакеты. Теплообмен в ширмовых поверхностях осуществляется излучением и конвекцией, поэтому часто такие поверхности называют полурадиационными. Пройдя ширмовый пароперегреватель, газы с температурой 800-900 °С поступают в конвективные пароперегреватели высокого и низкого давления, представляющие собой пакеты труб. Теплообмен в этих и последующих поверхностях нагрева осуществляется в основном конвекцией, и они называются конвективными. После пароперегревателя на пути газов, имеющих температуру 600-700°С, устанавливается водяной Экономайзер, а далее воздухоподогреватель, в котором газы (в зависимости от вида сжигаемого топлива) охлаждаются до 130-170°С. Дальнейшему снижению температуры уходящих из К. газов путём полезного использования их тепла для нагрева рабочей среды препятствует конденсация на поверхностях нагрева паров воды и серной кислоты, образующейся при сжигании сернистых топлив, что приводит к интенсивному загрязнению поверхностей нагрева золовыми частицами и к коррозии металла. Охлажденные газы, пройдя устройства очистки от золы (см. Золоулавливание) и в некоторых случаях от серы, выбрасываются дымовой трубой в атмосферу. Твёрдые продукты сгорания топлива, уловленные в К., периодически или непрерывно удаляются через системы золоудаления и шлакоудаления (См. Шлакоудаление). Для поддержания поверхностей нагрева в чистоте в К. предусматривается комплекс периодически включаемых обдувочных и обмывочных аппаратов, вибраторов и дробеочистительных устройств.

По характеру движения рабочей среды К. бывают с многократной естественной или принудительной циркуляцией и прямоточные. В К. с многократной циркуляцией рабочая среда непрерывно движется по замкнутому контуру (состоящему из обогреваемых и необогреваемых труб, соединённых между собой промежуточными камерами - коллекторами и барабанами), частично испаряясь в обогреваемой части контура. Образовавшийся пар отделяется от воды в барабане (см. Сепарация пара), а испарённая часть котловой воды возмещается питательной водой, подаваемой питательным насосом в водяной экономайзер и далее в барабан. Движение рабочей среды по циркуляционному контуру в К. с естественной циркуляцией осуществляется вследствие разности плотностей пароводяной смеси в обогреваемой (подъёмной) части контура и воды в необогреваемой или слабо обогреваемой (опускной) его части. В К. с принудительной циркуляцией рабочая среда по контуру перемещается под действием циркуляционного насоса. Непрерывное упаривание котловой воды в К. с многократной естественной или принудительной циркуляцией приводит к возрастанию концентрации растворённых и взвешенных в ней примесей (солей, окислов, гидратов окислов) которые могут, отлагаясь на внутренней поверхности обогреваемых труб, ухудшать условия их охлаждения и стать причиной перегрева металла и аварийной остановки К. из-за разрыва труб. Кроме того, чрезмерное повышение концентрации примесей в котловой воде недопустимо из-за уноса их паром из барабана с капельками воды или в виде парового раствора в пароперегреватель, а также в турбину, где примеси оседают на лопатках турбомашины, уменьшая её кпд. Во избежание возрастания концентрации примесей в котловой воде производятся непрерывные и периодические продувки котла (См. Продувка котла). Предельно допустимая концентрация примесей определяется конструкцией и параметрами К., составом питательной воды и тепловыми напряжениями экранных поверхностей нагрева.

В прямоточном К. нагрев, испарение воды и перегрев пара осуществляются за один проход среды по тракту. При такой организации процесса генерации пара примеси, содержащиеся в питательной воде, не могут быть выведены из К. продувкой части котловой воды, как это имеет место в К. с естественной или принудительной многократной циркуляцией. В прямоточном К. часть примесей осаждается на внутреннюю поверхности труб, а часть (вместе с паром) поступает в турбину, где отлагается на лопатках. Поэтому к питательной воде прямоточных К. предъявляются более жёсткие требования в отношении её качества. Вода, поступающая в такие К., предварительно обрабатывается в системе водоподготовки (См. Водоподготовка).

В энергетических установках для повышения экономичности используются схемы с вторичным (промежуточным) перегревом: пар после срабатывания части его тепловой энергии в турбине возвращается в К., подвергается дополнительному перегреву в пароперегревателе низкого давления и опять направляется в турбину. Известны К. с 2 промежуточными перегревами пара. Температура вторично перегретого пара обычно принимается такой же, как первично перегретого или близкой к ней. Для поддержания температуры первичного и вторичного перегрева пара на требуемом уровне К. снабжен регулирующими устройствами в виде смесительных и поверхностных теплообменников, систем рециркуляции части охлажденных дымовых газов в топочную камеру, приспособлениями для изменения угла наклона горелок и т. д.

К., например, для энергоблока мощностью 300 Мвт представляет собой сооружение высотой более 50 м, в плане занимает площадь порядка 1 тыс. м2. На сооружение такого К. расходуется около 4,5 тыс. т металла, примерно 1/3 этого количества приходится на трубные системы, работающие под давлением свыше 25 Мн/м2 (250 кгс/см2). Кпд К. превышает 90\%. Основные параметры энергетич. К. показаны в таблице.

Классификация котлоагрегатов по параметрам и производительности

----------------------------------------------------------------------------------------------------------------------------------------

| | Параметры перегретого пара | |

| |-----------------------------------------------------------------| |

| | давление, | температура, °С | Номинальная |

| Типы котлоагрегатов | Мн/м2 |-------------------------------------------| паропроизво- |

| | (кгс/см2) | первично | вторично | дительность т/ч |

| | | перегретый | перегретый | |

| | | пар | пар | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Е - с естественной | | | | 6,5; 10; 15; |

| циркуляцией с | 4 (40) | 440 | - | 20; 25; 35; |

| перегревом и без | | | | 50; 75 |

| перегрева пара |----------------------------------------------------------------------------------------------|

| | 10(100) | 540 | - | 60; 90; 120; 160; |

| | | | | 220 |

| |----------------------------------------------------------------------------------------------|

| | 14 (140) | 570 | - | 160; 210; 320; |

| | | | | 420; 480 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Еп - с естественной | | | | |

| циркуляцией с | | | | |

| перегревом и | 14 (140) | 570 | 570 | 320;500; 640 |

| промежуточным | | | | |

| перегревом пара | | | | |

|--------------------------------------------------------------------------------------------------------------------------------------|

| Пп - прямоточные с | | | | |

| перегревом и | 25,5(255) | 585-5 65 | 570 | 950; 1600; 2500 |

| промежуточным | | | | |

| перегревом пара | | | | |

----------------------------------------------------------------------------------------------------------------------------------------

Лит.: Рабинович О. М., Котельные агрегаты, М.- Л., 1963; Стырикович М. А., Катковская К. Я., Серов Е. П., Котельные агрегаты, М.- Л., 1959; их же. Парогенераторы электростанций, 2 изд., М.- Л., 1966; Резников М. И., Парогенераторные установки электростанций, М., 1968; Стырикович М. А., Мартынова О. И., Миропольский З. Л., Процессы генерации пара на электростанциях, М., 1969.

А. Я. Антонов.

Котлоагрегат паропроизводительностью 420 т/ч на давление пара 14 Мн/м2 (140 кгс/см2) и температуру 570°С: 1 - барабан; 2 - полурадиационный пароперегреватель; 3 - топочная камера; 4 - экраны; 5 - горелка; 6 - под; 7 - воздухоподогреватель; 8 - водяной экономайзер; 9 - конвективный пароперегреватель.

Прямоточный котёл         

Паровой котёл, в котором полное испарение воды происходит за время однократного (прямоточного) прохождения воды через испарительную поверхность нагрева. В П. к. вода с помощью питательного насоса подаётся в Экономайзер, откуда поступает в составляющие испарительную поверхность змеевики или подъёмные трубы, расположенные в топке. В выходной части змеевиков испаряются остатки влаги и начинается перегрев пара. В этой, т. н. переходной зоне, где содержание пара в воде достигает 90-95\% (по объёму), при недостаточно чистой питательной воде идёт интенсивное образование накипи. Поэтому змеевики переходной зоны во избежание пережога частично выводят из топки в газоходы, где теплонапряжение меньше. После переходной зоны пар окончательно перегревается в радиационном и конвективном пароперегревателях (См. Пароперегреватель). В П. к. отсутствуют барабан и опускные трубы, что значительно снижает удельный расход металла, т. е. удешевляет конструкцию котла. Существенный недостаток П. к. заключается в том, что соли, попадающие в котёл с питательной водой, либо отлагаются на стенках змеевиков в переходной зоне, либо вместе с паром поступают в паровые турбины, где оседают на лопатках рабочего колеса, что снижает кпд турбины. Поэтому к качеству питательной воды для П. к. предъявляются повышенные требования (см. Водоподготовка). Др. недостаток П. к. - увеличенный расход энергии на привод питательного насоса.

П. к. устанавливают главным образом на конденсационных электростанциях (См. Конденсационная электростанция), где питание котлов осуществляется обессоленной водой. Применение П. к. на теплоэлектроцентралях связано с повышенными затратами на химическую очистку добавочной воды. Наиболее эффективны П. к. для сверхкритических давлений (выше 22 Мн/м2), где др. типы котлов неприменимы.

В СССР П. к. конструировались в Бюро прямоточного котлостроения под руководством Л. К. Рамзина. Первый опытный П. к. с горизонтально расположенными змеевиками (котёл Рамзина) паропроизводительностью 3,6 т/ч и с давлением пара 14,1 Мн/л2 был пущен в 1932, а первый промышленный П. к. на 200 т/ч и такое же давление - в 1933 (параметры современных советских П. к. приведены в ст. Котлоагрегат). За рубежом наряду с котлами Рамзина применяют П. к. Бенсона с вертикальными подъёмными трубами и П. к. Зульцера, испарительная поверхность у которых выполнена из вертикально расположенных змеевиков с подъёмным и опускным движением воды.

Лит. см. при ст. Котлоагрегат.

Котёл-утилизатор         
  • Модульный теплоутилизационный парогенератор
Котел-утилизатор

Паровой котёл, не имеющий собственной топки и использующий тепло отходящих газов каких-либо промышленной или энергетической установки. Температура газов, поступающих в К.-у., колеблется от 350-400°С (при установке К.-у. за двигателями внутреннего сгорания) до 900-1500оС (за отражательными, рафинировочными и цементными печами). Крупные К.-у. имеют все элементы Котлоагрегата, за исключением топочных и др. устройств, связанных с сжиганием топлива. Для малых производительностей и низких давлений применяются К.-у. газотрубные либо с многократной принудительной циркуляцией (рис.), реже - прямоточные сепараторные и барабанные К.-у. с естественной циркуляцией. Водогрейные К.-у. обычно называются утилизационными Экономайзерами, или подогревателями. В некоторых случаях К.-у. настолько сращиваются с элементами технологического оборудования, что не могут быть выделены как самостоятельные агрегаты (устройства для испарительного охлаждения мартеновских печей, химических установок и т. д.). К.-у. широко применяются в химической, нефтяной, пищевой, текстильной и др. отраслях промышленности.

Лит.: Котлы-утилизаторы мартеновских печей, М., 1957; Котлы-утилизаторы и энерготехнологические агрегаты. Каталог-справочник, [М.], 1969.

И. Н. Розенгауз.

Схема котла-утилизатора с принудительной циркуляцией: 1 - барабан; 2 - испарительная часть; 3 - пароперегреватель; 4 - водяной экономайзер.

ГРИБОВАРНЯ         
  • <center>Грибоварочный котел </center>
Грибоварочный котел
пункт по засолке и маринованию свежесобранных грибов.
Каллиопа (инструмент)         
  • Афиша с изображением каллиопы, 1874 год
ПАРОВОЙ ОРГА́Н
Паровой орган
Каллиопа — паровой орган, использующий локомотивные или пароходные гудки. Название инструменту дано по имени древнегреческой музы Каллиопы.

Википедия

Паровой котёл

Паровой котёл — котёл, предназначенный для генерации насыщенного или перегретого пара. Может использовать энергию топлива, сжигаемого в своей топке, электрическую энергию (электрический паровой котёл) или утилизировать теплоту, выделяющуюся в других установках (котлы-утилизаторы).

Что такое КОТЕЛ ПАРОВОЙ - определение